Search:
Match:
2 results

Analysis

This paper investigates the fundamental limits of wide-band near-field sensing using extremely large-scale antenna arrays (ELAAs), crucial for 6G systems. It provides Cramér-Rao bounds (CRBs) for joint estimation of target parameters (position, velocity, radar cross-section) in a wide-band setting, considering frequency-dependent propagation and spherical-wave geometry. The work is significant because it addresses the challenges of wide-band operation where delay, Doppler, and spatial effects are tightly coupled, offering insights into the roles of bandwidth, coherent integration length, and array aperture. The derived CRBs and approximations are validated through simulations, providing valuable design-level guidance for future 6G systems.
Reference

The paper derives fundamental estimation limits for a wide-band near-field sensing systems employing orthogonal frequency-division multiplexing signaling over a coherent processing interval.

Analysis

This paper investigates the fundamental limits of near-field sensing using extremely large antenna arrays (ELAAs) envisioned for 6G. It's important because it addresses the challenges of high-resolution sensing in the near-field region, where classical far-field models are invalid. The paper derives Cram'er-Rao bounds (CRBs) for joint estimation of target parameters and provides insights into how these bounds scale with system parameters, offering guidelines for designing near-field sensing systems.
Reference

The paper derives closed-form Cram'er--Rao bounds (CRBs) for joint estimation of target position, velocity, and radar cross-section (RCS).