Search:
Match:
1 results

Analysis

This paper introduces a novel magnetometry technique, Laser Intracavity Absorption Magnetometry (LICAM), leveraging nitrogen-vacancy (NV) centers in diamond and a diode laser. The key innovation is the use of intracavity absorption spectroscopy to enhance sensitivity. The results demonstrate significant improvements in optical contrast and magnetic sensitivity compared to conventional methods, with potential for further improvements to reach the fT/Hz^(1/2) scale. This work is significant because it offers a new approach to sensitive magnetometry, potentially applicable to a broader class of optical quantum sensors, and operates under ambient conditions.
Reference

Near the lasing threshold, we achieve a 475-fold enhancement in optical contrast and a 180-fold improvement in magnetic sensitivity compared with a conventional single-pass geometry.