Search:
Match:
1 results

Analysis

This paper investigates the properties of a 'black hole state' within a quantum spin chain model (Heisenberg model) using holographic principles. It's significant because it attempts to connect concepts from quantum gravity (black holes) with condensed matter physics (spin chains). The study of entanglement entropy, emptiness formation probability, and Krylov complexity provides insights into the thermal and complexity aspects of this state, potentially offering a new perspective on thermalization and information scrambling in quantum systems.
Reference

The entanglement entropy grows logarithmically with effective central charge c=5.2. We find evidence for thermalization at infinite temperature.