Search:
Match:
1 results

Analysis

This paper addresses the critical issue of range uncertainty in proton therapy, a major challenge in ensuring accurate dose delivery to tumors. The authors propose a novel approach using virtual imaging simulators and photon-counting CT to improve the accuracy of stopping power ratio (SPR) calculations, which directly impacts treatment planning. The use of a vendor-agnostic approach and the comparison with conventional methods highlight the potential for improved clinical outcomes. The study's focus on a computational head model and the validation of a prototype software (TissueXplorer) are significant contributions.
Reference

TissueXplorer showed smaller dose distribution differences from the ground truth plan than the conventional stoichiometric calibration method.