Generative Bayesian Hyperparameter Tuning
Analysis
This paper introduces a novel generative approach to hyperparameter tuning, addressing the computational limitations of cross-validation and fully Bayesian methods. By combining optimization-based approximations to Bayesian posteriors with amortization techniques, the authors create a "generator look-up table" for estimators. This allows for rapid evaluation of hyperparameters and approximate Bayesian uncertainty quantification. The connection to weighted M-estimation and generative samplers further strengthens the theoretical foundation. The proposed method offers a promising solution for efficient hyperparameter tuning in machine learning, particularly in scenarios where computational resources are constrained. The approach's ability to handle both predictive tuning objectives and uncertainty quantification makes it a valuable contribution to the field.
Key Takeaways
“We develop a generative perspective on hyper-parameter tuning that combines two ideas: (i) optimization-based approximations to Bayesian posteriors via randomized, weighted objectives (weighted Bayesian bootstrap), and (ii) amortization of repeated optimization across many hyper-parameter settings by learning a transport map from hyper-parameters (including random weights) to the corresponding optimizer.”